SYNTHESIS OF 1-(β-CYANOETHYL)-4-ETHYNYL-2, 5-DIMETHYL-4-PIPERIDI-NOLS AND THE CORRESPONDING 4-VINYL COMPOUNDS

A. Sh. Sharifkanov, K. Kh. Tokmurzin, and T. G. Sarbaev

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 5, No. 1, pp. 74-75, 1969

UDC 547.823

Synthesis of $1-(\beta-\text{cyanoethyl})-4e-\text{ethynyl}-2e$, 5e-dimethyl piperidin-4a-ol and the corresponding 4e-vinyl compounds (β -isomers), $1-\beta$ -cyanoethyl-4a-ethynyl-2e, 5e-dimethyl piperidin-4e-ol (and the corresponding 4a-vinyl compound) (γ -isomers), and $1-(\beta-\text{cyanoethyl})-2e$, 5a-dimethyl-4a-vinyl piperidin-4e-ol (α -isomer) have been effected.

Previously, one of us together with I. N. Nazarov and others [1-3] synthesized 1-alkenyl-4-ethynyl-2, 5-dimethyl-4-piperidinols and the corresponding 4vinyl compounds and various esters of them. Some of the latter possess a high anesthetic activity. Continuing our systematic studies on the synthesis of new physiologically active compounds based on the acetylene derivative of 2, 5-dimethyl-4-piperidinol [4], we have synthesized with high yields (70-92%) 1- $(\beta$ -cyanoethyl)-4e-ethynyl-2e, 5e-dimethylpiperidin-4a-ol (III β) and the corresponding 4e-vinyl compound (IV β), $1-(\beta-\text{cyanoethyl})-4\text{a-ethynyl-2e}$, 5e-dimethylpiperidin-4e-ol (IIIγ) and the corresponding 4a-vinyl compound (IV γ), and 1-(β -cyanoethyl)-2e, 5a-dimethyl-4a-vinylpiperidin-4e-ol (IV α) by the cyanoethylation [5] of the individual isomers of 2, 5-dimethyl-4-ethynyl- (or -vinyl-) -4-piperidol ($I\beta$, γ), ($II\alpha$, β , γ) [6, 7] in anhydrous benzene.

EXPERIMENTAL

A flask fitted with a reflux condenser was charged with the starting materials (see table), and the reaction mixture was heated at $95-100\,^{\circ}$ C for 20 hr. After the benzene and the excess of acrylonitrile had been distilled off in vacuum, the reaction product was purified by recrystallization from gasoline ($60-80\,^{\circ}$ C fraction) or by redistillation in vacuum.

REFERENCES

- 1. I. N. Nazarov and A. Sh. Sharifkanov, Izv. AN SSSR, OKhN, 446, 1958.
- 2. I. N. Nazarov, A. Sh. Sharifkanov, and T. G. Sarbaev, ZhOKh, 30, 2904, 1960.
- 3. I. N. Nazarov, A. Sh. Sharifkanov, and S. A. Yusupov, ZhOKh, 30, 3608, 1960.
- 4. I. N. Nazarov and V. A. Rudenko, Izv. AN SSSR, OKhN, 610, 1948.
- 5. A. P. Terent'ev and A. N. Kost, Reactions and Methods of Investigating Organic Compounds, Vol. 2 [in Russian], Goskhimizdat, Moscow-Leningrad, p. 57, 1952.
- 6. I. N. Nazarov, A. Sh. Sharifkanov, S. A. Yusupov, and T. G. Sarbaev, ZhOKh, 30, 3267, 1960.
- 7. A. Sh. Sharifkanov, T. G. Sarbaév, and S. A. Yusupov, ZhOKh, 34, 2571, 1964.

3 November 1966

Kazakh State University, Alma-Ata

Stereoisomers of 1-(β -Cyanoethyl)-4-ethynyl-2,5-dimethyl-4-piperidinol and 1-(β -Cyanoethyl)-2,5-dimethyl-4-vinyl-4-piperidinol

Starting materials			I _			Found, %			Calculated, %			Π
piperidinol, g	acryloni- trile, g	benzene, ml	Reaction	Mp, °C	Empirical formula	С	Н	N	С	Н	И	Yield, %
(I β) 3.30	1.40	5	шβ	4243	C ₁₂ H ₁₈ N ₂ O	69.60 69.98	8.96 9.10	13.48 13.46	69,90	8.70	13.59	84
(1 γ) 7,65	3.10	10	Ш ү*	-	C ₁₂ H ₁₈ N ₂ O	69.87 70.04	8.92 8.83	13.80 13.90	69.90	8.70	13.59	77
(Π β) 3.70	1.60	5	IVβ	54 <i>—</i> 55	C ₁₂ H ₂₀ N ₂ O	69.34 69.50	9.83 9.87	13.60 13.71	69.23	9.61	13.46	92
(Η γ) 7.75	2.90	30	1ν γ	6667	C ₁₂ H ₂₀ N ₂ O	69.05 69.21	9.70 9.88	13.30 13.49	69.23	9.61	13.46	70
(H α) 4.80	2.10	5	IV α**	_	C ₁₂ H ₂₀ N ₂ O	69.04 69.11	9.61 9.72	13.25 13.30	69.23	9.61	13.46	84

^{*}Bn 153- 155° C (1.5 mm).

^{**}Bp 133-134° C (1.5 mm); d₄²° 1.0200; b_D²° 1.4980. Found MR_D 59.86. Calculated: MR_D 60.23.